A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production.

نویسندگان

  • Regina A Wallace
  • Wesley P Black
  • Xianshuang Yang
  • Zhaomin Yang
چکیده

The Gram-negative soil bacterium Myxococcus xanthus utilizes its social (S) gliding motility to move on surfaces during its vegetative and developmental cycles. It is known that S motility requires the type IV pilus (T4P) and the exopolysaccharide (EPS) to function. The T4P is the S motility motor, and it powers cell movement by retraction. As the key regulator of the S motor, EPS is proposed to be the anchor and trigger for T4P retraction. The production of EPS is regulated in turn by the T4P in M. xanthus, and T4P(-) mutants are S(-) and EPS(-). In this study, a ΔpilA strain (T4P(-) and EPS(-)) was mutagenized by a transposon and screened for EPS(+) mutants. A pilA suppressor isolated as such harbored an insertion in the 3rd clustered regularly interspaced short palindromic repeat (CRISPR3) in M. xanthus. Evidence indicates that this transposon insertion, designated CRISPR3*, is a gain-of-function (GOF) mutation. Moreover, CRISPR3* eliminated developmental aggregation in both the wild-type and the pilA mutant backgrounds. Upstream of CRISPR3 are genes encoding the repeat-associated mysterious proteins (RAMPs). These RAMP genes are indispensable for CRISPR3* to affect development and EPS in M. xanthus. Analysis by reverse transcription (RT)-PCR suggested that CRISPR3* led to an increase in the processing of the RNA transcribed from CRISPR3. We propose that certain CRISPR3 transcripts, once expressed and processed, target genes critical for M. xanthus fruiting body development and EPS production in a RAMP-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production.

Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cel...

متن کامل

The Hsp70-like StkA functions between T4P and Dif signaling proteins as a negative regulator of exopolysaccharide in Myxococcus xanthus

Myxococcus xanthus displays a form of surface motility known as social (S) gliding. It is mediated by the type IV pilus (T4P) and requires the exopolysaccharide (EPS) to function. It is clear that T4P retraction powers S motility. EPS on a neighboring cell or deposited on a gliding surface is proposed to anchor the distal end of a pilus and trigger T4P retraction at its proximal end. Inversely,...

متن کامل

CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus

BACKGROUND The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas...

متن کامل

The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in Myxococcus xanthus.

Here we attempted to identify the downstream target of the DifE histidine kinase in the regulation of exopolysaccharide (EPS) production in the Gram-negative bacterium Myxococcus xanthus. This bacterium is an important model system for the studies of Type IV pilus (T4P) because it is motile by social (S) motility which is powered by T4P retraction. EPS is critical for S motility because it is t...

متن کامل

Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera.

Myxococcus xanthus fibril exopolysaccharide (EPS), essential for the social gliding motility and development of this bacterium, is regulated by the Dif chemotaxis-like pathway. DifA, an MCP homolog, is proposed to mediate signal input to the Dif pathway. However, DifA lacks a prominent periplasmic domain, which in classical chemoreceptors is responsible for signal perception and for initiating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 196 23  شماره 

صفحات  -

تاریخ انتشار 2014